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Abstract. The Thouless, Anderson and Palmer (TAP) approach to thermodynamics of mean field
spin glasses is generalized to dynamics. A method to compute the dynamical TAP equations is
developed and applied to thep-spin spherical model. In this context we show to what extent
the dynamics can be represented as an evolution in thefree energylandscape. In particular the
relationship between the long-time dynamics and the local properties of thefree energylandscape
shows up explicitly within this approach. Conversely, by an instantaneous normal modes analysis
we show that the local properties of theenergylandscape seen by the system during its dynamical
evolution do not change qualitatively at the dynamical transition.

If at large times a system relaxes toward the equilibrium state, its dynamics is called
‘equilibrium dynamics’ and equilibrium properties such as the fluctuation dissipation relation
and the time translation invariance hold. In this case the departures of the dynamical probability
measure from the Gibbs measure vanish at large times, therefore the relationships between
thermodynamics and long-time dynamics are obvious.

However, there are many physical cases in which a system remains far from equilibrium at
long times. In the following we focus on glassy systems, for which relaxation times become so
long at low temperature that these systems are not in equilibrium on laboratory time scales [1].
In this case it is important to understand to what extent pure static concepts (e.g. the free energy
landscape) can be related to the long-time dynamics.

For thermodynamics therelevantlandscape is the free energy one. A number of authors
(see, for instance, many contributions in [2]) have proposed that this landscape isrelevant
also for dynamics and can be considered, at least at the simplest level, as the landscape on
which the dynamical evolution takes place. For example, for a spin system the landscape
for dynamics would be the free energy as a function of local magnetizationsmi(t) and the
dynamical variable would be the set of the averaged (over different thermal histories) local
magnetizations. At the simplest level the dynamical evolution would be a superposition of
two phenomena: a gradient descent in this free energy landscape and jumps between different
states with a probability given by a generalized Arrhenius law: exp(−β1F), where1F is the
free energy barrier between two states.

However, this is far from obvious and a proof of these claims is not, as yet, available.
The main difficulty is that, in general, the free energy landscape is not known and the long-
time dynamics is not solved. This ‘landscape paradigm’ [2] has received a firm theoretical
basis in the case of mean field frustrated systems, for which an analytic solution of the
thermodynamics [3] and of the asymptotic out of equilibrium regime [1] is, in general, available.

† Unité Mixte de Recherche du Centre Nationale de la Recherche Scientifique et de l’Ecole Normale Supérieure.
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For these models it was shown that a complicated energy function can lead to a rugged
free energy landscape and to an infinite number of correlated states. Thouless, Anderson and
Palmer (TAP) [4] computed for the Sherrington–Kirkpatrick model [5] the free energy as a
function of local magnetizations. At low temperature the TAP free energy has an infinite
number of minima; each one corresponds to a different possible state. It has been shown that
their weighted sum (with the Boltzmann weight) gives back equilibrium results [6]. Moreover,
states are correlated and organized in a ultra-metric structure. This is encoded in Parisi’s
solution [8] and was explicitly shown in the cavity approach [7] developed by Mézardet al,
which is a way to solve the minimization equations of the TAP free energy.

Furthermore, at low temperature these systems remain out of equilibrium also at very
large times [1] and their long-time dynamical behaviour exhibits non-trivial features such as
violation of the fluctuation–dissipation theorem and ageing [9].

In particular, for thep-spin spherical model Cugliandolo and Kurchan [9] showed that,
even if the system always remains out of equilibrium, the long-time dynamical behaviour can
be interpreted in terms of some properties of the free energy landscape. The most intriguing
fact is that the properties of the free energy landscape relevant for long-time dynamics and
thermodynamics are completely different. These results indicate that, at least in this mean
field case, there is a close relationship between long-time dynamics and the free energy
landscape which, therefore, has a meaning on its own also in an out-of-equilibrium regime. A
connection between the free energy landscape and the long-time out of equilibrium dynamics
is very interesting not only for its theoretical implications, but also from a technical point of
view. In fact this relationship allows one to obtain results about dynamics by a pure static
computation [10,11].

However, the reason for this relationship is not clear. Is the description of the dynamics
as an evolution on the free energy landscape correct or does something else happen, such that
the relationship found in [9] between the asymptotic behaviour and the free energy landscape
is always satisfied?

Up to now an answer to this question has been given only for the zero-temperature Langevin
dynamics ofp-spin (p > 2) spherical models [12]. In this case there is no thermal disorder,
so it is clear that a landscape over which the dynamics takes place exists and is the energy
landscape (or the free energy one, because at zero temperature they coincide). In [12] it was
shown that at least at zero temperature the main reason for ageing is the flatness of the landscape
seen during the long-time dynamics.

The regularity of the dynamical equations nearT = 0 and the interpretation of the
asymptotic behaviour in terms of TAP free energy [9] seem to indicate that the above scenario
might be true also at non-zero temperature. However, in this description of ageing it is implicitly
assumed that at large times a landscape for dynamics should exist and that this landscape should
be related to TAP free energy. Thus, the question about the relationship between dynamical
behaviour and free energy landscape arises again.

In this paper we clarify this relationship for thep-spin spherical model. The
thermodynamical and the dynamical behaviours of this model exhibit strong analogies with
the phenomenology of supercooled liquids, the glass transition and the glassy phase [1,13,14].
Moreover, the dynamical theory of thep-spin spherical model has a close relationship [15]
with the mode coupling theory [16], which serves as a basis for some theories of supercooled
liquids. For these reasons many authors consider that thep-spin spherical model provides a
mean field description of the glass transition and of the glassy phase.

For this model the TAP free energy was computed and studied in detail [17, 18] and an
analytic solution of the asymptotic out-of-equilibrium regime is available [9,19]. To understand
the reasons for the connection found in [9] between TAP free energy and the asymptotic
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behaviour, we will compute the equations satisfied by the local magnetizationsmi(t) = 〈si(t)〉
(where〈·〉 means the average over the thermal noises) without performing the average over
disorder. This is the generalization to dynamics of the TAP approach [4].

We will show that the dynamical evolution of the local magnetizations corresponds to a
relaxation in the free energy landscape (in a sense which we will specify) only for very large
times and for particular initial conditions; in all the other cases the dynamics is characterized
by a memory term, which makes the evolution non-Markovian. Moreover, the study of the
dynamical TAP equations shows that the stationary points of the static free energy and the free
energy Hessian in these points are closely related to the long-time dynamical behaviour, as was
already found from the solution of the equations on the correlation and the response functions
in [9, 11, 20]. Our results explicitly show that the scenario for slow dynamics found in [12]
remains valid also at finite temperature: ageing is due to the motion in the flat directions of
the free energy landscape in the presence of a vanishing source of drift.

Finally, we show that already for the simple case of thep-spin spherical model an analysis
of the local properties of theenergylandscape is not adequate to identify the dynamical glass
transition. We will compute the spectrum of the energy Hessian for dynamical configurations
seen during the dynamical evolution. The eigenvectors of the energy Hessian are called
instantaneous normal modes in liquid theory and have been introduced to represent the short-
time dynamics of liquids within a harmonic description [21].

We will show that the local properties of the energy landscape seen during the dynamical
evolution do not change qualitatively at the dynamical glass transition but at a higher
temperatureT0, which seems to be related to the damage spreading transition [22]. This
indicates that at the dynamical glass transition the energy landscape seen by the system remains
locally the same, whereas itsglobal properties change and this can be observed by analysing
the local properties of the free energy landscape.

The paper is organized as follows: in section 1 we derive the static TAP free energy for
mean field spin glass models. This section serves as an introduction to the method applied in
the following to derive the dynamical TAP free energy. In section 2 this method is applied
to derive the dynamical TAP equations via the analogy between the dynamical theory and
a supersymmetric static theory. In section 3 the asymptotic analysis of the dynamical TAP
equations is performed. In section 4 the local properties of the energy landscape seen during
the dynamical evolution is analysed. Finally we conclude in section 5.

1. Static TAP approach

A useful function in the study of phase transitions is the Legendre transform of free energy.
This function, which can be interpreted as the effective potential whose minima represent
different possible states, gives an intuitive (and quantitative) description of phase transitions.
Consider, for example, ferromagnetic systems. In this case the effective potential is a function
of magnetization. The ferromagnetic transition corresponds to the splitting of the paramagnetic
minimum in the two ferromagnetic minima. A vanishing external magnetic field breaks the
up–down symmetry and fixes the system in one of the two possible ferromagnetic states.

Generally, frustrated systems are characterized by a complicated energy landscape, which
can give rise eventually to the existence of many possible states. In this case it is not possible to
characterize the statesa priori studying the various possible schemes of spontaneous symmetry
breaking. Thus, the effective potential has to be computed as a function of the averaged
microscopic configuration and this is what TAP did for the Sherrington–Kirkpatrick model.
They derived the Legendre transform of the free energy with respect to the local magnetic fields
hi , obtaining the effective potential (now called TAP free energy) which is a function of the



8368 G Biroli

local magnetizationsmi for a fixed (but typical) disorder configuration. At low temperature
the TAP free energy has an infinite number of minima; each one corresponds to a different
possible state. It has been shown that their weighted sum (with the Boltzmann weight) gives
back equilibrium results [6] found by the replica [8] or the cavity method [3].

In this section we show how the static TAP free energy can be derived for mean field spin
glass models. In this way we present in a simple case the strategy which we will follow to
compute dynamical TAP equations. The derivations of the static TAP equations presented in
the literature [18,23] seem to be quite often model dependent and rather involved. Therefore
we hope that this section may be also useful to show an easy way to obtain the TAP free energy
for a generic mean field model. It does not matter if one considers spherical or Ising spins,
two-body or many-body interactions.

A straightforward way to compute the TAP free energy for mean field (completely
connected) spin glass models consists in finding a good perturbative expansion such that using
the properties of typical disorder configurations it is possible to show that only a finite number
of terms of the perturbation series does not vanish.

Following this strategy we will compute the Legendre transform of the free energy with
respect to〈Si〉 and

∑N
i=1〈S2

i 〉. One may wonder why we Legendre transform also with respect
to
∑N

i=1〈S2
i 〉; the reason is that otherwise the perturbation expansion would contain an infinite

number of terms.
Note that for Ising spins the average

∑N
i=1〈S2

i 〉 is trivial, so we will Legendre transform
only with respect to magnetizations. This is a peculiarity of the Ising spins, which disappears
for spherical (or Potts) spins and in the dynamical case.

1.1. Static TAP equations

We are finally in a position to define the TAP free energy0(β,mi, l) which depends on the
magnetizationmi at every sitei and on the spherical parameterl (for Ising spinsl is absent).
0 is the Legendre transform of the‘true’ free energy:

−β0(β,mi, l) = ln Tr{Si } exp

(
− βH({Si})−

∑
i

hi(Si −mi)− λ
2

N∑
i=1

(S2
i − l)

)
. (1)

For Ising spins Tr{Si } =
∑
{Si } and for spherical spins Tr{Si } =

∫ +∞
−∞

∏N
i=1 dSi . The Lagrange

multipliershi(β) fix the magnetization at each sitei: 〈Si〉 = mi andλ(β), which is present
only for spherical models, enforces the condition

∑N
i=1〈S2

i − l〉 = 0. 〈·〉 denotes the thermal
average andN is the number of spins.

Once0 is known, the equation− 2
N

∂β0

∂l
|l=1 = λ fixes the spherical constraint (

∑
i S

2
i = N )

and gives the spherical multiplier as a function ofmi , whereas− ∂β0

∂mi
|l=1 = hi are the TAP

equations, which fix the values of local magnetizations.
In the following we focus on thep-spin Hamiltonian:

H({Si}) = −
∑

16i1<···<ip6N
Ji1,...,ipSi1 . . . Sip (2)

where the couplings are Gaussian variables with zero mean and averageJ 2
i1,...,ip

= p!
2Np−1 .

The standard perturbation expansion for the generalized potential0 is rather involved
[18,24] and cannot be directly applied to the Ising case. Thus, we prefer to follow the approach
developed for the Sherrington–Kirkpatrick model by Plefka [25] and Georges and Yedidia [26]
because it is simple and can be directly applied to all mean field spin glass models.
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They obtained the TAP free energy for the Sherrington–Kirkpatrick model expanding
−β0 in powers ofβ aroundβ = 0:

−β0(β,mi, l) =
+∞∑
n=0

−∂
n(β0)

∂βn

∣∣∣∣
β=0

βn

n!
. (3)

For a general system this corresponds to a1
d

expansion (d being the spatial dimension) around
mean field theory [26]; so it is not surprising that for mean field spin glass models only a finite
number of terms survives. The zeroth- and first-order terms give the ‘naive’ TAP free energy,
whereas the second term is the Onsager reaction term.

From the definition of−β0 given in equation (1), we find for Ising spins:

−β0I (β,mi)
∣∣∣∣
β=0

= −
N∑
i

[
1 +mi

2
ln

(
1 +mi

2

)
+

1−mi
2

ln

(
1−mi

2

)]
(4)

and for spherical spins†:

−β0S(β,mi, l)
∣∣∣∣
β=0

= N

2
ln

(
l − 1

N

N∑
i=1

m2
i

)
. (5)

These are the entropies of non-interacting Ising or spherical spins constrained to have
magnetizationmi .

The linear term in the power expansion (3) of the TAP free energy equals

−β ∂(β0S,I )
∂β

∣∣∣∣
β=0

= β
∑

16i1<···<ip6N
Ji1,...,ip 〈Si1 . . . Sip 〉β=0

−β
N∑
i

∂hi

∂β

∣∣∣∣
β=0

〈Si −mi〉β=0 − β ∂λ
∂β

∣∣∣∣
β=0

N∑
i=1

〈S2
i − l〉β=0 (6)

where the last sum is present only for spherical models. The second and the third term are
zero because of Lagrange conditions; moreover, atβ = 0 the spins are decoupled so all the
thermal averages are trivial:

−β ∂(β0S,I )
∂β

∣∣∣∣
β=0

= β
∑

16i1<···<ip6N
Ji1,...,ipmi1 . . . mip . (7)

This ‘mean field’ energy together with the zeroth-order term gives the standard mean field
theory, which becomes exact for infinite-ranged ferromagnetic system. The Onsager reaction
term comes from the quadratic term in the expansion (3):

−β
2

2

∂2(β0S,I )

∂β2

∣∣∣∣
β=0

= β2

2

〈( ∑
16i1<···<ip6N

Yi1,...,ip

)2〉c
β=0

(8)

Yi1,...,ip = Ji1,...,ipSi1 . . . Sip − (Si1 −mi1)mi2 . . . mip − · · · −mi1 . . . mip−1(Sip −mip). (9)

To compute this term we have used the following Maxwell relations:

∂hi

∂β

∣∣∣∣
β=0

= − ∂

∂mi

∂(β0S,I )

∂β

∣∣∣∣
β=0

(10)

∂λ

∂β

∣∣∣∣
β=0

= − 2

N

∂

∂l

∂(β0S)

∂β

∣∣∣∣
β=0

. (11)

† We are neglecting a useless constant in0S . A term in0S , that does not depend onl andmi , has no influence on
thermodynamics.
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Using the statistical properties of the couplings it is easy to check that the only terms giving a
contribution of the order ofN correspond to the squares ofJi1,...,ip :

−β
2

2

∂2(β0S,I )

∂β2

∣∣∣∣
β=0

= β2

2

∑
16i1<···<ip6N

〈Y 2
i1,...,ip
〉cβ=0

= β2

2p!

∑
i1 6=···6=ip

J 2
i1,...,ip

(〈S2
i1
〉β=0 . . . 〈S2

ip
〉β=0 −m2

i1
. . . m2

ip

−p〈(Si1 −mi1)2〉β=0m
2
i2
. . . m2

ip
). (12)

Using again the statistical properties of the couplings and neglecting terms giving a contribution
of an order smaller thanN we find that the reaction term depends onmi through the overlap
q = 1

N

∑
i m

2
i only:

−β
2

4

∂2(β0I )

∂β2

∣∣∣∣
β=0

= β2N

2
(1− qp − p(qp−1− qp)) (13)

−β
2

2

∂2(β0S)

∂β2

∣∣∣∣
β=0

= β2N

4
(lp − qp − p(lqp−1− qp)). (14)

Higher derivatives in equation (3) lead to terms which can be neglected because they are not
of order ofN [18,26]; so collecting (4), (5) (7), (13) and (14) we find the TAP free energy for
Ising and sphericalp-spin models. Deriving the free energy with respect to magnetizationsmi
and the spherical parameterl (in the spherical case) one finds the TAP equations. For instance,
for spherical spins we find:

mi

1− q =
β

(p − 1)!

∑
i2 6=···6=ip(6=i)

Ji,i2,...,ipmi2 . . . mip −
β2

2
p(p − 1)qp−2(1− q)mi (15)

λ = 1

1− q +
pβ2

2
(1− qp−1). (16)

These equations admit for certain temperatures an infinite number of solutions. This is a
fundamental characteristic and difficulty of mean field spin glasses.

It has been shown that the weighted sum of the local minima of the TAP free energy gives
back equilibrium results found by the replica or the cavity method [6,18]:

Z =
∑
α

e−Nβfα (17)

wherefα is the TAP free energy of a stable solution{mαi } of TAP equations. The different
TAP states can be grouped with respect to their free energy; then the partition function can be
rewritten as

Z =
∫

df e−N(βf−6(f ;β)) (18)

whereN6(f ;β) is the logarithm of the number of TAP states with free energyf and is called
complexity [13, 18, 27]. Note that states which do not have the minimum free energy can
dominate the sum in (18) if their number is very large.

Finally, we note that it was crucial to Legendre transform also with respect to1
N

∑N
i=1 S

2
i ,

otherwise in (3) the derivatives higher than the second order would not vanish and an infinite
number of terms should be re-summed. This re-summation is automatically achieved if one
Legendre transform also with respect to1

N

∑N
i=1 S

2
i .
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1.2. A brief survey on thep-spin spherical model

In the following we recall very briefly some results on the thermodynamics and the dynamics
of thep-spin spherical model which will be useful for the asymptotic analysis of the dynamical
TAP equations. A detailed review has been done by Barrat [28].

1.2.1. The thermodynamics.The thermodynamics of thep-spin spherical model has been
studied within the replica approach in [29], whereas the TAP equations have been analysed
in [17,18].

It has been shown that there is a high-temperature regimeT > Td , Td =
√
p(p−2)p−1

2(p−1)p−1 , for

which the paramagnetic statemi = 0 dominates the partition function, i.e.Z = e−Nβfpara.
There is also an intermediate-temperature regimeTs < T < Td in which the partition

function is dominated by an exponential number (inN ) of states, i.e. the related complexity is
different from zero. In this case the free energy is given by

feq = f ∗ − 1

β
6(f ∗;β) β = ∂6

∂f
(f ∗;β). (19)

Finally, there is a low-temperature regimeT < Ts in which the sum in (18) is dominated by the
lowest states in free energy. Their number is infinite but not exponential inN , so the related
complexity is zero.

In the intermediate temperature regime there is a non-trivial distribution of states, but
the equilibrium free energy (feq) is equal to the paramagnetic one (fpara). Note that the
paramagnetic state does not exist in this temperature regime [20], but the equality betweenfeq
andfpara implies that the system seems to be in the paramagnetic phase yet. Actually, in the
simplest replica analysis this phase is still described by the replica symmetric solution.

The thermodynamic phase transition is atTs . At this temperature the one-step replica
symmetry breaking solution becomes stable and forT < Ts the system is in the glassy phase.

1.2.2. The dynamics. The dynamics of thep-spin spherical model for random initial
conditions (corresponding to a quench from infinite temperature) has been studied in [9, 19];
whereas the dynamics taking an initial condition, which is a typical equilibrium configuration
at a certain temperatureT ′, has been analysed in [11,20].

It has been shown that for random initial conditions, actually the physical case, thep-spin
spherical model has a transition atTd (which is higher thanTs). Above the dynamical transition
temperature there is a coexistence of some non-trivial TAP states with the paramagnetic
state which dominates thermodynamics. Starting from a random initial condition the system
thermalizes within the paramagnetic state; however, an initial condition belonging to a stable
TAP state leads always to an equilibrium dynamics inside this state. Between the static and
the dynamic transition temperatures the paramagnetic state is fractured into many TAP states.
Starting from a random initial condition the system ends up ageing and the asymptotic values
of some one-time quantities are equal to the corresponding ones of the threshold states, which
are the highest (in free energy) TAP states. For lower temperatures the static is dominated by
the lowest TAP states, whereas the dynamics is still dominated by the highest TAP states.

Moreover, the peculiarity of the spectrum of the free energy Hessian for threshold states,
which is a shifted semi-circle law with minimum eigenvalue equal to zero, has been used to
give an interpretation of ageing as the evolution in a landscape with many flat directions [9,12].



8372 G Biroli

2. Dynamical TAP approach

The dynamics of thep-spin spherical model will be investigated using a Langevin relaxation
dynamics. In the following we introduce the superspace formalism. Within this compact
notation the dynamics and the static theory considered in the previous section are formally very
similar [30]. Therefore dynamical TAP equations can be derived straightforwardly generalizing
the method described in the previous section.

2.1. Formalism

We start by considering a Langevin equation for the relaxation dynamics of spin glass models:

dsi
dt
= −β ∂H

∂si
+ ηi(t) (20)

whereηi(t) are Gaussian random variables with zero mean and variance†〈ηi(t)ηj (t ′)〉 =
2δi,j δ(t − t ′). Note that now〈·〉 means the average over the thermal noise.

Standard field theoretical manipulations [31] lead to the Martin–Siggia–Rose
functional [32] for the expectation value of an operatorO(si):

〈O(si)〉 =
∫ N∏

i=1

DsiDŝiDciDci exp(S(si, ŝi , ci, ci))O(si) (21)

S =
∫ +∞

0
dt

( N∑
i=1

−ŝi
(

dsi
dt

+ β
∂H

∂si
− ŝi

)
+

N∑
i,j=1

ci

(
∂

∂t
δi,j + β

∂2H

∂si∂sj

)
cj

)
(22)

whereci(t) andci(t) are Grassmann fields (‘ghosts’) andsi(t) andŝi (t) are commuting fields,
si(t) real andŝi (t) purely imaginary. Starting from the expectation value of products of the
two commuting fields one can construct correlation and response functions:

C(t, t ′) = 1

N

N∑
i=1

〈si(t)si(t ′)〉 R(t, t ′) = 1

N

N∑
i=1

∂〈si(t)〉
∂hi(t ′)

= 1

N

N∑
i=1

〈si(t)ŝi(t ′)〉

wherehi(t) is the magnetic field coupled to the spinsi . In superspace [31] the actionS can be
written in a compact form, which looks like a static action. To fix the notation in superspace,
we introduce two anticommuting Grassmann variablesθ , θ ; the integrals over these variables
are defined as∫

dθ =
∫

dθ = 0
∫

dθ θ =
∫

dθ θ = 1. (23)

We also introduce the (commuting) superfieldSi :

Si(t, θ, θ) = si(t) + θci(t) + ci(t)θ + θθ ŝi(t) (24)

and the notation

D = −2
∂2

∂θ∂θ
− 2θ

∂2

∂θ∂t
+
∂

∂t
(1) = (t1, θ1, θ1). (25)

In terms of superfields the Martin–Siggia–Rose functional can be written as (see for
example [30,31])

Z =
∫ N∏

i=1

DSi exp

(∫
d1

[
− βH(Si(1))− 1

2

N∑
i=1

Si(1)DSi(1)

])
(26)

† Note that time is measured in units of temperature. The real time is obtained by multiplyingt by the inverse of the
temperature:tr = βt . This implies that the variance of thermal noise is equal to 2 for any temperature.
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where d1= dt dθ dθ .
The actionS is supersymmetric [31] and the generators of this supersymmetry areD′ = ∂

∂θ

andD
′ = ∂

∂θ
+ θ ∂

∂t
.

The first generator implies, in particular, that the actionS is invariant with respect to
translations ofθ . By using the hypothesis that the SUSY is not broken it is possible to show [33]
that the system is at equilibrium; furthermore, the Ward identities associated to SUSY imply
an equilibrium dynamics and in particular the fluctuation–dissipation theorem. The dynamical
phase transition of mean field spin glass models is associated to a spontaneous SUSY breaking
to the subgroup of translations with respect toθ [30]. The initial conditions play for SUSY the
same role as space boundary conditions in ordinary symmetry breaking. Therefore, different
choices of initial conditions can lead to different asymptotic behaviours [9,11,20].

In superspace the dynamical theory appears as a static theory for a superfield with an
internal coordinate (t, θ, θ ) and a HamiltonianH with an extra quadratic term. This similarity
with a static theory allows one to generalize the expansion in powers ofβ described in section 1
to the dynamical case.

2.2. Dynamical TAP equations

In the following we focus on the Langevin dynamics of thep-spin spherical model for times
not diverging withN . Within the static TAP approach one obtains a set of closed equations
which, given the magnetic fieldshi and fixed the spherical condition (l = 1), have to be solved
with respect to the local magnetizationsmi and the spherical multiplierλ. In the dynamical
case one has to compute a set of closed equations which, given the magnetic fieldshi(t)

and fixed the spherical conditionC(t, t) = 1, have to be solved with respect to the local
magnetizationsmi(t), the spherical multiplierλ(t), the correlation and the response functions.
This is the natural generalization of the static TAP approach described in section 1. As its static
counterpart it allows one to reconstruct the dynamical TAP free energy from a finite number
of terms of the perturbative expansion.

To obtain the TAP dynamical free energy we apply the method of section 1 to the logarithm
of the functional (26): so we Legendre transform with respect to the (super)magnetizations
Mi(1) = 〈Si(1)〉 and the two-point functionC(1, 2) = 1

N

∑N
i=1〈Si(1)Si(2)〉. The physical

quantitiesmi(t), C(t, t ′) andR(t, t ′) are all encoded in these superspace functions.
The dynamical TAP free energy is

−β0D = ln
∫ N∏

i=1

DSi exp(−L′ − L′′)

L′ = −β
∫

d1
∑

16i1<···<ip6N
Ji1,...,ipSi1(1) . . . Sip (1) + 1

2

N∑
i=1

∫
d1 d2Si(1)1(1, 2)Si(2)

L′′ =
∫

d1
N∑
i=1

Hi(1)(Si(1)−Mi(1)) + 1
2

N∑
i=1

∫
d1 d23(1, 2)(Si(1)Si(2)− C(1, 2))

(27)

where1(1, 2) = D(1)δ(1− 2) and the delta function is defined in the following way:

δ(1− 2) = δ(t1− t2)δ(θ1− θ2)δ(θ1− θ2) = δ(t1− t2)(θ1− θ2)(θ1− θ2).

The Lagrange parametersHi(1) and3(1, 2) fix, respectively, the (super)magnetization at each
sitei: 〈Si(1)〉 = Mi(1) and the two-point functionC(1, 2) = 1

N

∑N
i=1〈Si(1)Si(2)〉.

As we noted in the previous paragraph it is very important to specify the initial conditions.
We take as initial condition a fixed configuration{s0

i }; it does not matter if{s0
i } is correlated

or not with the couplings, because we do not average over disorder. In appendix A we show
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how to take into account the initial condition in the derivation of the dynamical TAP equation.
For the sake of clarity in the following this problem will not be addressed.

As in section 1, we construct0D through its power expansion inβ aroundβ = 0:

−β0D(β,Mi, C) =
+∞∑
n=0

−∂
n(β0D)

∂βn

∣∣∣∣
β=0

βn

n!
. (28)

The dynamical TAP equations are the Lagrange relations obtained from0D:

− δβ0D

δMi(1)
= Hi(1) − 2

N

δβ0D

δC(1, 2)
= 3(1, 2). (29)

Since forβ = 0 the dynamical theory is Gaussian, the zeroth-order term of (28) reduces to

−(β0D)
∣∣∣∣
β=0

= N

2
T r[ln(C −Q)] − N

2

∫
d1 d21(1, 2)C(1, 2) (30)

whereQ(1, 2) = 1
N

∑N
i=1Mi(1)Mi(2) is the (super)overlap function. The linear term in the

right-hand side of (28) is a straightforward generalization of its static counterpart (6):

−β ∂(β0D)
∂β

∣∣∣∣
β=0

= β
∫

d1
∑

16i1<···<ip6N
Ji1,...,ip 〈Si1(1) . . . Sip (1)〉β=0

−β
∫

d1
N∑
i

∂Hi(1)

∂β

∣∣∣∣
β=0

〈Si(1)−Mi(1)〉β=0

−β
∫

d1 d2
∂3(1, 2)

∂β

∣∣∣∣
β=0

N∑
i=1

〈Si(1)Si(2)− C(1, 2)〉β=0. (31)

As in section 1 the Lagrange conditions imply that the last two terms are zero. Since spins are
decoupled atβ = 0, (31) simplifies to

−β ∂(β0D)
∂β

∣∣∣∣
β=0

= β
∫
d1

∑
16i1<···<ip6N

Ji1,...,ipMi1(1) . . .Mip (1). (32)

The analogy with the static case is evident also for the reaction term:

−β
2

2

∂2(β0D)

∂β2

∣∣∣∣
β=0

= β2

2

〈( ∑
16i1<···<ip6N

Yi1,...,ip

)2〉c
β=0

(33)

Yi1,...,ip =
∫

d1 [Ji1,...,ipSi1(1) . . . Sip (1)− (Si1(1)−Mi1(1))Mi2(1) . . .Mip (1)

− · · · −Mi1(1) . . .Mip−1(1)(Sip (1)−Mip(1))]. (34)

To obtain the equation (33) we have used the following Maxwell relations:
∂Hi(1)

∂β

∣∣∣∣
β=0

= − δ

δMi(1)

∂(β0D)

∂β

∣∣∣∣
β=0

(35)

∂3(1, 2)

∂β

∣∣∣∣
β=0

= − 2

N

δ

δC(1, 2)

∂(β0D)

∂β

∣∣∣∣
β=0

. (36)

Using the statistical properties of the couplings it is easy to check that only the terms which
correspond to squares ofJi1,i2...,ip give a contribution of the order ofN and that the reaction term
depends on the two-point functionC(1, 2) and the (super)overlapQ(1, 2) only. Therefore, we
find that the dynamical reaction term reduces to

−β
2

2

∂2(β0D)

∂β2

∣∣∣∣
β=0

= β2N

4

∫
d1 d2 [C(1, 2)p −Q(1, 2)p

−p(C(1, 2)−Q(1, 2))Q(1, 2)p−1]. (37)
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As in section 1 higher derivatives in equation (28) can be neglected because they do not give
a contribution of the order ofN ; so collecting expressions (30),(32) and (37) we find the
dynamical TAP free energy:

−(β0D) = N

2
Tr[ln(C −Q)] − N

2

∫
d1 d21(1, 2)C(1, 2)

+β
∫

d1
∑

16i1<···<ip6N
Ji1,...,ipMi1(1) . . .Mip (1)

+
β2N

4

∫
d1 d2 [(p − 1)Q(1, 2)p − pC(1, 2)Q(1, 2)p−1 +C(1, 2)p]. (38)

The dynamical TAP equations are obtained by the two Lagrange relations (29):

δ(1− 3) = D1(C(1, 3)−Q(1, 3)) +
∫

d2 [3(1, 2)− µ(C(1, 2)p−1−Q(1, 2)p−1)]

×(C(2, 3)−Q(2, 3)) (39)

D1Mi(1) +
∫

d23(1, 2)Mi(2) = −Hi(1) +
′∑

16i2<···<ip6N
Ji,i2,...,ipMi2(1) . . .Mip (1)

−µ
∫

d2 [(p − 1)(C(1, 2)−Q(1, 2))Q(1, 2)p−2

−(C(1, 2)p−1−Q(1, 2)p−1)]Mi(2) (40)

whereµ = pβ2

2 and the prime means that the sum does not run overi. Note that the last
term of (40) vanishes forp = 2. This is natural because forp = 2 the dynamical theory is
Gaussian.

2.3. Solution respecting causality

A priori the dynamical TAP equations (39) and (40) may admit many different solutions,
which can break partially or completely the symmetries of the action (22). Up to now only
the solution respecting causality† [34] has been studied. The others solutions are instantons,
related to barrier crossing [35]. In the following we focus on the causal solution, which only
partially breaks the invariance of the action (26) [30]. The unbroken symmetries allow one to
find the general form of this solution [30]:

Mi(1) = mi(t) (41)

C(1, 2) = C(t1, t2) + (θ1− θ2)(θ1R(t2, t1)− θ2R(t1, t2)). (42)

The spherical constraintC(1, 1) = 1 is fixed through3(1, 2), which has the usual form [30]:

3(1, 2) = δ(1− 2)λ(t1) (43)

whereλ(t) is a real function of time.
Plugging these expressions in the dynamical TAP equations (39) and (40), we find that

the magnetizations and the correlation and the response functions satisfy fort > 0 andt ′ > 0
the following equations:

∂

∂t
(C(t, t ′)−Q(t, t ′)) = 2R(t ′, t)− λ(t)(C(t, t ′)−Q(t, t ′))

+µ
∫ t ′

0
dt ′′ (C(t, t ′′)p−1−Q(t, t ′′)p−1)R(t ′, t ′′)

† There is only one solution respecting causality.
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+µ(p − 1)
∫ t

0
dt ′′ (C(t ′′, t ′)−Q(t ′′, t ′))R(t, t ′′)C(t, t ′′)p−2 (44)

∂

∂t
R(t, t ′) = −λ(t)R(t, t ′) + δ(t − t ′)

+µ(p − 1)
∫ t

t ′
dt ′′ R(t, t ′′)R(t ′′, t ′)C(t, t ′′)p−2 (45)(

∂

∂t
+ λ(t)

)
mi(t) = βhi(t) + β

′∑
16i2<···<ip6N

Ji,i2,...,ipmi2(t) . . . mip (t)

+µ(p − 1)
∫ t

0
dt ′′(C(t, t ′′)p−2 −Q(t, t ′′)p−2))R(t, t ′′)mi(t ′′) (46)

whereQ(t, t ′) = 1
N

∑N
i=1mi(t)mi(t

′) is the overlap function andhi(t) is the magnetic
field acting on theith spin. The correlation function satisfies the boundary condition
C(t, 0) = Q(t, 0) and magnetizations fulfil the initial conditionsmi(0) = s0

i (see appendix A).
Moreover, the spherical conditionC(t, t) = 1 fixesλ as a function of time through the

equation

λ(t)(1− q(t)) = 1 +
1

2

dq

dt
+µ

∫ t

0
dt ′′ (C(t, t ′′)p−1−Q(t, t ′′)p−1)R(t, t ′′)

+µ(p − 1)
∫ t

0
dt ′′ (C(t ′′, t)−Q(t ′′, t))R(t, t ′′)C(t, t ′′)p−2 (47)

whereq(t) = Q(t, t).
In the following we show that starting from (44)–(47) one can obtain the dynamical

equations of [9] as a particular case. Actually, if one takes as initial condition for the dynamical
measure a uniform average over all possible configurations as in [9], then the magnetizations
are equal to zero att = 0 and there is no boundary condition on the correlation function
(see appendix A). In this case we find that the equation (46) is trivially satisfied and the
equations (44), (45) and (47) reduce to the ones considered in [9].

Furthermore, it is easy to verify that at zero temperature (46) coincides with a simple
gradient descent, as it should because the thermal noise is absent; to handle the zero-temperature
limit we write (46) in terms of the real timetr = βt , finding(
∂

∂tr
+ λ(tr )

)
mi(tr ) = hi(tr ) +

′∑
16i2<···<ip6N

Ji,i2,...,ipmi2(tr ) . . . mip (tr )

+
p(p − 1)

2

∫ tr

0
dt ′′r (C(tr , t

′′
r )
p−2 −Q(tr , t ′′r )p−2)R(tr , t

′′
r )mi(t

′′
r ) (48)

whereλ = λ
β

. ForT = 1
β
= 0 the last term in equation (48) is zero because without thermal

noiseQ(tr , t ′r ) = C(tr , t ′r ). Therefore, we recover the zero-temperature limit of the Langevin
equations: a pure gradient descent in the energy landscape.

In summary, for the solution respecting causality we have derived the dynamical TAP
equations (44)–(47). These equations on the correlation and the response functions and on the
local magnetizations have to be solved for a given realization of the couplings and for a given
initial condition.

Note that the equations on local magnetizations do not have the form of a gradient descent
in the free energy landscape because the Onsager reaction term is non-Markovian. This is
natural because it represents the contribution to the effective field of theith spin due to the
influence at previous times of theith spin on the others.
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3. Asymptotic analysis

In the following we perform an asymptotic analysis of equations (44)–(47). For the sake of
simplicity we will takehi(t) = 0 in (46).

Two asymptotic behaviours have been found for thep-spin spherical model depending on
the choice of the initial conditions [9,11,20]:

• True ergodicity breaking: the system equilibrates in a separate ergodic component.
Asymptotically, time homogeneity and fluctuation–dissipation theorem (FDT) hold
[11,20].
• Weak ergodicity breaking†: the system does not equilibrate. Asymptotically, two time

sectors can be identified. In the first one (FDT regime), which corresponds to finite time
differences|t − t ′| ∼ O(1), (t � 1, t ′ � 1), the system has a pseudo-equilibrium
dynamics since FDT and time translation invariance hold asymptotically. In the second
one (ageing regime), which corresponds to ‘infinite’ time differences|t − t ′| ∼ t ′, FDT
and time translation invariance do not apply and the system ages [9].

These two dynamical behaviours correspond to different Ansätze for the asymptotic form of
the two-time quantities. Following [11,20] we take for the equilibrium dynamics in a separate
ergodic component the Ansatz (t > t ′ � 1):

C(t, t ′) = CFDT(t − t ′) R(t, t ′) = RFDT(t − t ′) (49)

RFDT(τ ) = −θ(τ )dCFDT(τ )

dτ
Q(t, t ′) = q (50)

lim
τ→∞CFDT(τ ) = q. (51)

In the case of slow dynamics we take for finite time separations the Ansatz corresponding
to equilibrium dynamics, but withQ(t ′, t) = q ′. The difference betweenq andq ′ already
indicates that the dynamics is not characterized by a true breaking of ergodicity and that the
system does not equilibrate in a separate ergodic component. Whereas for the ageing sector
we take the Ansatz‡ [9]:

C(t, t ′) = qCag(λ) tR(t, t ′) = Rag(λ) (52)

Rag(λ) = xq dC

dλ
Q(t, t ′) = q ′Qag(λ) (53)

Cag(1) = Qag(1) = 1 λ = t ′

t
(54)

wherex parametrizes the violation of FDT. Note that in the usual case the overlap function is
not present.

In the next sections we will follow this strategy: assuming some properties on the
dynamical evolution we will analyse the asymptotic solutions which are consistent with this
assumption; then following the physical picture associated to each asymptotic solution we will
propose which are the initial conditions related to this asymptotic solution.

The matching between asymptotic behaviour and initial conditions is a general problem
in mean field spin glass dynamics; up to now there are no analytical methods available and one
has to resort to numerical integration of the dynamical equations. Nevertheless, in our case the

† The concept of weak ergodicity breaking was introduced in [36].
‡ The asymptotic equations are obtained neglecting the time derivatives. This has as a consequence that from an
asymptotic solution we obtain infinitely many others by reparametrization [9]. For the sake of clarity in the following
we focus on the particular parametrization shown in equations (52)–(54).
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integro-differential character of the dynamical equations and their number (two equations on
two-time quantities andN equations on one-time quantities) makes it difficult to reach very
long times.

3.1. Equilibrium dynamics

In this section we assume that the system has an equilibrium dynamics and we analyse all the
asymptotic solutions which are consistent with this assumption.

We denote respectively byλ∞ andm∞i the asymptotic values of the spherical multiplier
and of the local magnetizations. Plugging the equilibrium dynamics Ansatz into (46) and (47)
we find that the equations onm∞i andλ∞ are the static TAP equations (15) and (16). In the
asymptotic limit equations (44) and (45) on the correlation and the response functions reduce
to:(

d

dτ
+ λ∞ − µ

)
C(τ) +µ + 1− λ∞ = −µ

∫ τ

0
dτ ′ C(τ − τ ′)p−1 dC(τ ′)

dτ ′
. (55)

The above equation describes the equilibrium dynamics inside the ergodic component
associated to a TAP solution{m∞i }. Note that this asymptotic dynamical solution is consistent
with the assumption of an equilibrium dynamics only if{m∞i } is a local minimum of the free
energy.

As we have remarked before, the asymptotic analysis does not give any information
about the relationship among initial conditions and asymptotic solutions. However, since this
asymptotic solution represents the equilibration in a stable TAP state{m∞i }, it is quite natural
to associate to this solution an initial condition belonging to this state. This interpretation
is suggested by the results of [11, 20]. Indeed in [11, 20] the low-temperature dynamics has
been studied starting from an initial condition thermalized at a temperatureT ′ between the
statical and the dynamical transition temperatures. This procedure corresponds to take an initial
condition belonging to the TAP states, which are the equilibrium states at the temperatureT ′.
In [11,20] it has been shown that the system relaxes in the TAP states associated to the initial
condition. It is easy to show that the equation satisfied byC(τ) in [11, 20] can be written in
the form (55).

Further, to elucidate how dynamical quantities approach their asymptotic values, we write
equation (46) in a more appealing form:

dmi
dt
= −β ∂0S

∂mi
+ f (t)mi + βh′i (t)

f (t) = 1

1− q +µ(1− qp−1)− λ(t)
βh′i (t) = −µ(1− qp−1− (p − 1)qp−2(1− q))mi

+µ(p − 1)
∫ t

0
dt ′′ (C(t, t ′′)p−2 −Q(t, t ′′)p−2)R(t, t ′′)mi(t ′′)

(56)

where0S is the static TAP free energy andf (t) andh′i (t) are functions going to zero at large
times.

Equation (46) shows that the dynamical evolution of magnetizations looks like a gradient
descent in the free energy landscape but with an extra spherical multiplierf (t) and magnetic
fieldsh′i (t) correlated with the initial condition. As it should be for an equilibrium dynamics, all
quantities are characterized by an exponential relaxation (to zero forf (t) andh′i (t)), therefore
it is not possible to identify any slow or fast variables and the reaction term remains non-
Markovian at all time (exceptt = ∞). Anyway, the interpretation of this asymptotic solution
as an equilibration in a TAP state shows up explicitly from (56).
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In summary, for an asymptotic solution corresponding to an equilibration in a stable TAP
state the dynamical probability measure relaxes exponentially fast toward the equilibrium
measure associated to this state and at large times the evolution of the local magnetizations
looks like a gradient descent in the free energy landscape, but with the extra spherical multiplier
f (t) and the magnetic fieldsh′i (t) going to zero.

3.2. Non-equilibrium dynamics

3.2.1. Weak ergodicity breaking.In the following we assume that the system has a slow
dynamics withq 6= q ′. As we have already pointed out, the difference betweenq andq ′ marks
that the system does not equilibrate in a single ergodic component.

The asymptotic analysis in the time sector corresponding to finite time differences leads
to the same equation (55) for the correlation and the response functions. Whereas for infinite
time differences we find that the asymptotic equations admit the solution:q ′ = 0, q which
coincides with the overlap of the threshold states [17, 18],x = (p−2)(1−q)

q
andCag(λ) and

Rag(λ), which satisfy the same equations found in [9].
Equation (47) on the spherical multiplier reduces to:λ∞ = (1−q)−1+µ(1−qp−1)and the

asymptotic value of the local magnetizationsm∞i is zero. This is exactly the same asymptotic
solution found in [9] for random initial conditions. Therefore, it is natural to associate to this
solution a random initial condition, which is not correlated with any particular stable TAP
state.

To study how the local magnetizations vanish at large times, the ‘mean field’ energy term
in (46) can be neglected because it is of the order ofm

p−1
i . Moreover, we can substitute to all

terms which multiplymi their asymptotic values, finding that (46) reduces to(
∂

∂t
+ λ∞

)
mi(t) = µ(p − 1)

∫ t

0
dt ′′ C(t, t ′′)p−2R(t, t ′′)mi(t ′′). (57)

This is exactly the same equation satisfied byC(t, t ′) andR(t, t ′) for a fixed and finitet ′ and
a very large value oft [9]. As a consequence the local magnetizations and (for a fixedt ′) the
correlation and the response functions go to zero at large times in the same way and because
of the same reason: two different typical noise histories bring the system in two completely
uncorrelated configurations [37].

Additionally, we remark that the local magnetizations vanish at large time, whereas the
correlation function tends in the FDT regime to the overlap of the threshold states. This seems to
indicate that the dynamical measure tends towards (for the one-time quantity) a static measure
which is broken in separate components, i.e. the threshold states. In other words, and more
formally, the fact that the overlap functionQ(t, t ′) tends to zero and the correlation function
tends (in the FDT regime) to the overlap of the threshold states implies that the dynamical
probability measure is not a ‘pure’ probability measure, because the clustering in time is not
valid in the FDT regime.

3.2.2. Between true and weak ergodicity breaking.In the following we assume that the system
has a slow dynamics such that limt→∞ CFDT (t) = lim t→∞ 1/N

∑N
i=1m

2
i (t), i.e.q = q ′.

The asymptotic analysis in the time sector corresponding to finite time differences leads
to the same equation (55) for the correlation and the response functions. Whereas for the
‘infinite’ time difference sector (|t − t ′| ∼ t ′) we find that the asymptotic equations admit the
solution

Qag(λ) = Cag(λ) x = (p − 2)(1− q)
q

(58)
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whereRag(λ) andCag(λ) satisfy the same equations found in [9],q = q ′ satisfies the equation
for the overlap of the threshold states [17,18]:

1

p − 1
= µqp−2(1− q)2 (59)

and the equation (47) on the spherical multiplier reduces to (16). The previous results, in
particular that the correlation and response functions fulfil the equation of the equilibrium
relaxation dynamics inside a threshold state and the equality betweenq ′ andqthreshold, indicate
that at very large times the system has almost thermalized within a threshold state.

Note that the asymptotic form of (44) is automatically verified forQag(λ) = Cag(λ),
whereas (45) coincides in the asymptotic limit with the the first one of the two coupled equations
onCag(λ) andRag(λ) found in [9]. Another equation is obtained applying to (46) the Martin–
Siggia–Rose approach. This allows one to average over the couplings and to obtain another
equation onQag(λ) andRag(λ). As expected, if one takesQag(λ) = Cag(λ) this equation
coincides with the second one verified byCag(λ) in [9].

Therefore, we have found that this asymptotic solution is very similar to the one associated
to random initial conditions. The only difference is that for the latter the local magnetizations
vanish because of the spreading of the dynamical probability measure at finite times. As
we have suggested in the previous section, it seems that the dynamical probability measure
(starting from random initial conditions) tends toward a static probability measure which is
broken into separate components, i.e. the threshold states, whereas for the asymptotic solution
studied in this section the effects due to the spreading of the dynamical probability measure
are absent and the system seems to equilibrate (in the FDT time regime) within a threshold
state. As a consequence, it seems natural that the initial conditions related to this asymptotic
solution are the configurations typically reached in the long-time dynamics (starting from a
random initial condition).

In fact, a way to obtain this asymptotic solution starting from a random initial condition is
to introduce fieldshi(t) which enforce the condition limt→∞ 1/N

∑
i=1N mi(t)

2 = q ′ = qth.
There are many different way to fix the fieldshi(t) to enforce this condition; however, for
each realization ofhi(t) it is clear that limt→∞ hi(t) = 0, because the conditionq ′ = qth
is automatically verified in the long-time limit. The spreading of the dynamical measure is
due [37] to the many possible paths that the system can follow in the energy landscape. A
particular realization of the noise brings the system along a particular path. The role of the
magnetic fieldshi(t) is to avoid the spreading of the dynamical measure: a particular realization
of hi(t) brings the system along one of the possible paths.

Recently, Franz and Virasoro [38] have developed an interpretation of the equality between
the fluctuation dissipation ratio (x, see equation (53)) and the rate of growth of the complexity
close to the asymptotic state in terms of quasi-equilibrium concepts. In particular, they
have introduced the notion of quasi-equilibrium state. The local magnetizations of a quasi-
equilibrium state are defined for a fixed thermal noise as [38]:m

q−eq
i (t) = 1/τ

∫ t
t−τ Si(t

′) dt ′,
whereτ is such thatC(t, t − τ) = qth. The analysis of the equations of motion [39] for
m
q−eq
i (t) confirms and strengthens the previous interpretation ofhi(t).

In the following we analyse the slow evolution of local magnetizations. Note that since the
overlap and the correlation functions are equal in the ageing regime, one can obtain the slow
dynamical behaviour of the correlation and the response functions starting from the evolution
of mi(t).

As in the previous section, the equations on the local magnetizations can be rewritten as a
gradient descent in the free energy landscape with the extra spherical multiplierf (t) and the
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extra magnetic fieldsh′i (t) going to zero at large times. Therefore, (56) implies that

lim
t→∞

∂0S

∂mi
(mi(t)) = 0. (60)

Thus, even if the analysis of the FDT regime shows that at very large times the system has
almost thermalized within a threshold state, the fact that the overlap function shows an ageing
behaviour implies that magnetizations do not tend toward a particular threshold state. In other
words, the local magnetizations continue to evolve forever (even if more and more slowly)
and their large-time limit does not exist. This already happens for the spherical Sherrington–
Kirkpatrick model, for which an exact analytical solution is available [40].

As it is implicitly contained in the slow dynamic assumption, the local magnetizations are
(asymptotically) constant on time scales associated to the FDT regime and their evolution is on
time scales associated to the ageing regime. Because of almost flat directions,f (t) andh′i (t)
play a fundamental role and are responsible for ageing. In fact, at large times the dynamics
takes place only along almost flat directions and these vanishing functions of time act as a
vanishing source of drift, so that the larger is the time, the weaker is the drift and the slower is
the evolution: the system ages.

3.3. Free energy landscape and long-time dynamics

At finite times the dynamics cannot be represented as an evolution in the free energy landscape
because the Onsager reaction term in (46) is non-Markovian.

Only in the asymptotic time regime it is possible to establish a connection between the
free energy landscape and the dynamical evolution.

When one takes an initial condition which leads to an equilibrium dynamics, i.e. the
equilibration in a stable TAP state{m∞i }, the equations on the local magnetizations imply that
the relaxation of{mi(t)} toward{m∞i } coincides with a gradient descent in the free energy
landscape with an extra spherical multiplier and magnetic fields going to zero at large times.

However, in the most interesting and the most physical case of random initial conditions
the local magnetizations vanish at large times. Thus, the dynamical evolution is dominated by
the threshold states, but the asymptotic evolution of the local magnetizations does not show
any indication of this.

This result can be understood thinking to a Langevin dynamics in a double well potential
V (x). At large times the dynamical probability measure is equally distributed on the two
wells, therefore the mean position〈x(t)〉 is zero. As a consequence, the mean position gives
a very poor description of the probability measure; whereas the second moment〈x(t)x(t ′)〉
gives more insight into the probability distribution. The same thing happens for thep-spin
spherical model for random initial conditions: the local magnetizations〈si(t)〉 vanish at large
times and do not give a good representation of the asymptotic dynamical probability measure,
whereas the two-time quantitiesC(t, t ′) andR(t, t ′) do.

However, a description of the asymptotic dynamics as an evolution in the flat directions
of the free energy landscape makes sense. To avoid the previous problem, i.e. the spreading
of the dynamical measure, one can take as initial condition a configuration typically reached
in the long-time dynamics†.

In this case the correlation and the response functions have the same asymptotic behaviour
as for a random initial condition. Moreover,C(t, t ′) andQ(t, t ′) are equal in the ageing time
regime. Thus, the ageing dynamics obtained starting from a random initial condition can be

† In the analogy with the double well potential this procedure is equivalent to taking the initial condition in one of
the two wells.
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represented in terms of equation (56), i.e. as a motion in the flat directions of the free energy
landscape.

In summary, we have found that the representation of the long-time dynamics as an
evolution in the free energy landscape is correct. This evolution consists in a gradient descent
in the free energy landscape with an extra spherical multiplier and extra magnetic fields going
to zero at large time. These vanishing sources of drift depend on the history of the system and
are crucial for slow dynamics.

4. Instantaneous normal modes analysis of the energy landscape

In this section we analyse the local properties of the energy landscape seen by the system
during the dynamical evolution. In particular, we carry out a computation of the spectrum
of the energy Hessian for a typical dynamical configuration. The eigenvectors of the energy
Hessian are called instantaneous normal modes [21] and they have been introduced in liquid
theory to represent the short-time dynamics within a harmonic description.

To be more specific, consider the energy Hessian of thep-spin spherical model:

Hi,j = −Ei,j +
λ

β
δi,j (61)

Ei,j = p(p − 1)

p!

∑
i3 6=···6=ip(6=i,j)

Ji,j,i3,...,ip si3 . . . sip (62)

and the density of states

ρ(µ; t) =
〈 N∑
α=1

δ(µ− µα)
〉

(63)

whereµα is an eigenvalue of (61),〈·〉 means the average over the dynamical configurations
at time t and the overbar indicates the average over the couplings. As we will show in the
following, ρ(µ; t) is a self-averaging quantity; therefore the typical and the average value of
ρ(µ; t) are the same (in the large-N limit).

Now we present a sloppy derivation ofρ(µ; t); a more careful derivation is shown in
appendix B.

Since the density of states ofE and the spectrum of the energy Hessian (61) are related
by λ(t)

β
through a translation, in the following we focus onE.

To compute the correlation functions of the elements ofE one can safely assume [12,41]
that the configurationssi are uncorrelated with the couplings at the leading order inN , finding:

〈Ei,j 〉 = 0 i 6 j (64)

〈Ei,jEk,l〉 = δi,kδj,l b
2

4
i 6 j k 6 l (65)

whereb2 is equal to

b2 = 4

[
p(p − 1)

p!

]2 ∑
i3 6=···6=ip(6=i,j)

∑
j3 6=···6=jp(6=i,j)

Ji,j,i3,...,ipJi,j,j3,...,jp 〈si3 . . . sip sj3 . . . sjp 〉 (66)

= 4

[
p(p − 1)

p!

]2

Np−2

(
p!

2Np−1

)
(p − 2)!C(t, t)p−2

= 2p(p − 1)

N
(i < j). (67)
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Figure 1. Left edge (λmin) of the spectrumρ∞(µ)as a function of the inverse temperatureβ = 1/T
for p = 3. 1/βd is the dynamical glass transition temperature, whereas 1/β0 is the temperature at
whichλmin reaches its minimum value and is related to the damage spreading transition.

The matrixE is nothing else that a Gaussian random matrix with varianceN2 b2

4 . Therefore,
its typical (and average) density of states (see, for example, [42]) is a semi-circle law centred
in 0 with support [−√2p(p − 1), 2p(p − 1)]. As a consequence, the spectrum of the energy
Hessian (61) equals

ρ(µ; t) = 1

πp(p − 1)

√
2p(p − 1)−

(
µ− λ(t)

β

)2

. (68)

At large timesλ(t) converges to its limiting valueλ∞ andρ(µ; t) converges toρ∞(µ),
which is obtained replacingλ∞ to λ(t) in (68). In the following we consider the dynamics
starting from a random initial condition. In this caseλ∞ verifies the following equation:

λ∞

β
= 1

β(1− q) +
pβ

2
(1− qp−1) (69)

whereq is equal to zero forT > Td and fulfils the equation (59) of the overlap of the threshold

states forT < Td , Td =
√
p(p−2)p−2

2(p−1)p−1 .
In figure 1 the left edge (λmin) of the spectrumρ∞(µ) is plotted as a function ofβ = 1/T

for p = 3. At very high temperature all the eigenvalues are positive because the energy
landscape seen by the system is dominated by the quadratic potential which fix the spherical
constraint. In this regime decreasing the temperature the energy landscape seen by the system
becomes more and more rugged and the minimum eigenvalue decreases and becomes negative.
On the other hand, at very low temperature there is a finite fraction of negative eigenvalues.
In this case, if the temperature decreases then the minimum eigenvalue of the energy Hessian
grows and equals zero at zero temperature, as it is expected for a dynamics in a rugged energy
landscape.

Therefore, analysing the left edge ofρ∞(µ) we have found a crossover from a high-
temperature regime in which the system is substantially confined in a harmonic potential
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and a low-temperature regime in which the ruggedness of the energy landscape seen by
the system during the dynamical evolution becomes more and more relevant. We can
interpret the temperature at whichλmin reaches its minimum value as a crossover temperature
T0 = 1/β0 =

√
p/2 between these two temperature regimes. It is quite interesting to note that

T0 has a relationship with the damage spreading transition [22].
In fact, it has been shown in [22] that thep-spin spherical model exhibits a damage

spreading transition at a temperatureTds , which satisfies the inequality
√
p/2− 1 6 Tds <√

p/2. This result shows that the temperatureT0 arising in the study of local properties of the
energy landscape is related to the damage spreading transition temperatureTds . This is quite
natural because the damage spreading is a probe for the ruggedness of the energy landscape.

Following [22], it is interesting to note that for high values ofp, Tds (∼√p/2) is much
above the temperatureTTAP (∼√logp) where an exponentially large number of states appears.
As a consequence, the origin of damage spreading is purely dynamical and not related to TAP
states.

In figure 1 we have also indicated the dynamical transition temperatureTd = 1/βd . The
density of states does not change qualitatively when the temperature crossesTd : a fraction
of negative eigenvalue is present atTd and vanishes forT going to zero. Therefore, there is
no sign of the dynamical transition in the behaviour of the density of states of instantaneous
normal modes.

In summary, we have shown that the damage spreading transition seems to be related to a
change in the local properties of the energy landscape seen by the system during the dynamical
evolution. Conversely, the local properties of the energy landscape do not change qualitatively
at the dynamical glass transition. At the dynamical glass transition the energy landscape seen
by the system remains locally the same, whereas itsglobal properties change and this can be
observed by analysing thelocal properties of the free energy landscape.

5. Conclusion

In this paper the TAP approach to thermodynamics of mean field spin glasses has been
generalized to dynamics. We have shown a procedure to compute dynamical TAP equations,
which is the generalization to dynamics of the1

d
(d being the spatial dimension) expansion

developed by Georges and Yedidia [26]. This method has been applied to thep-spin spherical
model. In this context we have focused on the interpretation of the dynamics as an evolution
in the free energy landscape.

We have shown that at finite times the dynamics cannot be represented as a gradient
descent in the free energy landscape, because the reaction term in the dynamical TAP equation
is non-Markovian.

However, the long-time dynamics can be interpreted as an evolution in the free energy
landscape. Actually, for initial conditions belonging to stable TAP states the long-time
evolution of local magnetizations coincides with a gradient descent in the free energy landscape
with an extra spherical multiplier and extra magnetic fields going to zero at large times. For
random initial conditions the local magnetizations vanish asymptotically because at any finite
time two different typical noise histories bring the system into two completely uncorrelated
configurations [37]. However, also in this case, a description of the long-time dynamics as
an evolution in the free energy landscape makes sense, providing that the effects due to the
spreading of the dynamical probability measure are separated from the slow motion of the
system. In particular, we have explicitly shown that slow dynamics is due to the motion in the
flat directions of the free energy landscape in presence of a vanishing source of drift.

These results clarify and strengthen the relationship between long-times dynamics and
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local properties of the free energy landscape, which was already found in [9,11,20,43].
Moreover, we have shown that the local properties of theenergylandscape seen during

the dynamical evolution do not change qualitatively at the dynamical glass transition but at a
higher temperatureT0, which is related to the damage spreading transition [22]. This indicates
that at the dynamical glass transition the energy landscape seen by the system remains locally
the same, whereas itsglobalproperties change and this can be observed by analysing thelocal
properties of the free energy landscape.

Finally, we remark that there is still an important question which remains open and which
has been clarified only for the zero-temperature dynamics of thep-spin spherical model [12]:
even if it is known that the TAP states having flat directions in the free energy landscape
dominate the off-equilibrium dynamics, it is not clear why starting from a random initial
condition the system goes toward these states. The dynamical TAP equations are strongly
non-Markovian for any finite time. This result suggests that the matching between a certain
initial condition (e.g. a random initial condition) and the asymptotic regime (slow dynamics
at the threshold level) cannot be explained in terms of the static free energy and is a purely
dynamical problem.

We conclude by noting that the formal analogies (due to the superspace notation) between
static and dynamic free energy let us hope that the study performed in this paper can also
be extended to the cases in which an analytical solution is not available (finite-dimensional
system) but in which the symmetry properties of the asymptotic solution are known [44]. We
are currently working in this direction.

Furthermore, the dynamical TAP approach developed in this paper could be useful for the
study of barrier crossing and instantons in the dynamics of mean field models [35].
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Appendix A. Initial condition

We take as initial condition a fixed configuration{s0
i }; therefore, in the Martin–Siggia–Rose

functional (21) one has only to integrate on paths such that{si(t = 0) = s0
i }. We impose this

constraint by adding to the action (22) the term

−
∫

dt δ(t)ŝi(t)(si(t)− s0
i ). (A1)

This extra term has only two effects within the superspace formulation of dynamics: it changes
the operatorD and the (super)magnetic fieldHi , as

Din = −2
∂2

∂θ∂θ
− 2θ

∂2

∂θ∂t
+
∂

∂t
+ δ(t) H in

i = Hi − δ(t)s0
i . (A2)

This replacement does not affect the derivation of dynamical TAP equations; then, taking care
of the initial condition, leads only to replacingD with Din andHi with Hin

i in the dynamical
TAP equations (39 ) and (40). This corresponds to replacing∂

∂t
with ∂

∂t
+δ(t) in equations (44)

and (45) and to adding to equation (46) the termδ(t)(mi(t)− s0
i ).

These new terms fix the initial condition on magnetizations,mi(t = 0) = s0
i , and

enforce the equalityC(t, 0) = Q(t, 0). This last condition is already expected on physical
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grounds because the thermal noise is not relevant at timet = 0, therefore
∑N

i=1〈si(t)si(0)〉 =∑N
i=1〈si(t)〉si(0).

Note that if we do not fix any particular initial condition, but we take as initial condition
for the dynamical measure a uniform average over all possible configurations as in [9], then
we find that the local magnetizations, the spherical multiplier, the correlation and the response
functions fulfil (44)–(47) without the boundary condition onC. In this case, the equations on
the local on magnetizations are trivially satisfied becausemi = 0 for every timet .

Appendix B. INM

In this appendix we show a standard way to compute the density of states ofE:

Ei,j = p(p − 1)

p!

∑
i3 6=···6=ip

Ji,j,i3,...,ip si3 . . . sip (B1)

where{si(t)} is an instantaneous dynamical configuration.
The spectral properties ofE can be obtained through the knowledge of the resolvent

G(µ + iε): that is, the trace of((µ + iε)1− E)−1 [45]. Denoting the average over disorder
by (·) and the average over instantaneous configurations at timet by 〈·〉, the mean density of
states reads

ρ(µ; t) = − 1

π
lim
ε→0+

Im 〈G(µ + iε)〉. (B2)

The averaged resolvent is then written as the propagator of a replicated Gaussian field
theory [45]:

G(µ + iε) = lim
n→0

−i

Nn

∫ ∏
i

dEφi

N∑
k=1

Eφ2
k 〈exp(L(si(t), µ))〉

where

L(si(t), µ) =
N∑
i=1

i

2
(µ + iε) Eφ2

i −
N∑

i,j=1

i

2
Ei,j Eφi · Eφj . (B3)

Replicated fieldsEφi aren-dimensional vector fields attached to each sitei. The average over
the instantaneous dynamical configurations can be written in terms of Martin–Siggia–Rose
functional [32]:

〈exp(L(si(t), µ))〉 =
∫ N∏

i=1

DsiDŝi exp[L(si, µ) + SMSR(si, ŝi )] (B4)

SMSR(si, ŝi ) =
∫ +∞

0
dt

N∑
i=1

−ŝi
(

dsi
dt

+
∂H

∂si
− T ŝi

)
(B5)

where we do not write the ‘ghosts’ fields because we follow the Ito convention.
Within the Martin–Siggia–Rose approach the average over the couplings is a simple

Gaussian integral. Then we find that the total action is equal to

S(si, ŝi , φ
a
i , t) =

N∑
i=1

i

2
(µ + iε) Eφ 2

i +
∫ +∞

0
dt

N∑
i=1

−ŝi
(

dsi
dt
− T ŝi + λsi

)
+

1

4Np−1

×
∑

i1 6=···6=ip

[ ∫
dt ′
(
ŝi1si2 . . . sip + · · · + si1 . . . sip−1 ŝip +

i

2

∑
l 6=m

Ot
l,m

)]2

(B6)
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whereOt
l,m is symmetric under the exchange ofl andm and is equal to

Ot
l,m(t

′) = δ(t ′ − t)
n∑
a=1

si1(t
′) . . . sil−1(t

′)φail sil+1(t
′) . . . sim−1(t

′)φaimsim+1(t
′) . . . sip (t

′)

(l < m) (B7)

Ot
l,m(t

′) = 0 l = m. (B8)

The action (B6) depends onsi, ŝi , φai only through

C(t, t ′) = 1

N

N∑
i=1

si(t)si(t
′) R(t, t ′) = 1

N

N∑
i=1

si(t)ŝi(t
′) D(t, t ′) = 1

N

N∑
i=1

ŝi (t)ŝi (t
′)

(B9)

Ka(t) = 1

N

N∑
i=1

si(t)φ
a
i K̂a(t) = 1

N

N∑
i=1

ŝi (t)φ
a
i Qa,b = 1

N

N∑
i=1

φai φ
b
i . (B10)

In the large-N limit the functional integral giving the resolventG is dominated by a saddle
point contribution.

The action (B6) is invariant when one changesEφ → −Eφ; therefore, we takeKa(t) = 0
andK̂a(t) = 0. With this choice the saddle point equations onKa(t) andK̂a(t) are trivially
satisfied.

The saddle point equations onC(t, t ′), R(t, t ′) andD(t, t ′) are the usual ones [9].
Using the identity

−δa,b = 1

N

N∑
i=1

〈〈
φai
∂S

∂φbi

〉〉
(B11)

where〈〈·〉〉 means the average oversi, ŝi , φai (with weight exp(S)), it is easy to obtain the
saddle point equation onQa,b:

1
2p(p − 1)C(t, t)p−2

n∑
c=1

Qb,cQa,c − i(µ + iε)Qa,b − δa,b = 0. (B12)

It is well known that in the computation of the density of states the replica symmetric saddle
point gives the leading contribution. Therefore, we takeQa,b = qδa,b.

The spherical constraint fixesC(t, t) = 1, then from the saddle point equation onq we

getq = iµ+
√

2p(p−1)−µ2

p(p−1) .
The density of states ofE is obtained from (B2):

ρ(µ; t) = 1

π
Re(q) = 1

πp(p − 1)

√
2p(p − 1)− µ2 (B13)

which is the Wigner semi-circle law. As expected, this density does not depend ont . The only
dependence on time for the density of states of the energy Hessian comes fromλ(t)

β
, which

translates the centre of the semi-circle (see equation (68)).
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